If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+45x-146=0
a = 1; b = 45; c = -146;
Δ = b2-4ac
Δ = 452-4·1·(-146)
Δ = 2609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-\sqrt{2609}}{2*1}=\frac{-45-\sqrt{2609}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+\sqrt{2609}}{2*1}=\frac{-45+\sqrt{2609}}{2} $
| 2x-6=6-3x | | 5x+14–4x=23+x–9 | | 32-7x=-6(x=3) | | 32-7x=-6 | | -(w+8)+2w-15=-6 | | 8x-x-2=12 | | 94-x=52 | | 2x-53=3x–88 | | 3x-5(x-4)=-7+5x-8 | | 4x-(-8)=-2 | | 19x-1+13x=127 | | -30=4j-9j | | 4-2x+13=10-9x+7+14 | | 2x–53=3x–88 | | 2y=y/5+9 | | 15t+6=36 | | -4x+2x=4x-2 | | 2u–53=3u–88 | | 8+t/2=10 | | 37=4p+5 | | y=6y | | F(x)=-9-5x | | 18x=12x+75 | | 3(1−3x)=2(−4x+7) | | -16+k/5=-19 | | 1-4/3x+3=11 | | 8n+20=30n+6+4 | | 3x^-2=12 | | -18=-5m-4m | | |1-4/3x|+3=11 | | 6(5x-3)=2=14 | | 9=13-j/3 |